
#ESCconf#ESCcon
f

Algorithms Rule Supreme
Lloyd Moore



#ESCconf#ESCconf

Algorithms Rule Supreme

Lloyd Moore, Senior Embedded Systems Engineer
30 years of embedded and machine vision software experience

Code optimizations may get 2-4x improvement
Algorithm changes can get more than 10x

We are going to look at how to tailor an algorithm to best fit the problem 
definition and improve performance

 

“ ”



#ESCconf#ESCconf

Agenda

Comparison 
and 

Summary

Algorithm 
analysis 

  
“Single pass” 

approach

Algorithm 
analysis 

  
“Wanderer” 

approach

Algorithm 
analysis 

  
“Traditional

”
approach

Definition of 
connectivity

/blob analysis



#ESCconf#ESCconf

Assume images are 100 x 100 pixels – simple math
Algorithms will be pseudo-code and we’ll count operations

Algorithms somewhat simplified for presentation
Will consider memory/cache friendliness separate from operations 

Will consider advantages & disadvantages for image content

Comparing Algorithms

“Traditional” Algorithm

“Wanderer” Algorithm

“Single Pass” Algorithm

Consider 3 algorithm solutions:

1

2

3



#ESCconf#ESCconf

Also called Blob Analysis
Goal is to determine which pixels in an image are adjacent
Transforms a group of individual pixels into one “object”
For our discussion we will record a bounding box for the “object”

What is Connectivity Analysis



#ESCconf#ESCconf

“Traditional” Algorithm - Problem

Will use a “text 
book”

approach to start

Won’t make any assumptions 
about blobs in image

Serves as a baseline for
other algorithms

Likely wouldn’t want to 
use this in real life



#ESCconf#ESCconf

Threshold Image

Apply edge detection kernel

“Walk” image to find start of an outline

Follow the outline to find the blob, and update bounding box

Continue until all blobs found, end of the image

 

“Traditional” Algorithm - Outline

1

2

3

4

5



#ESCconf#ESCconf

Threshold:

For each pixel in image 100 x 100 pixels = 10000 loops
read + inc + write + compare + test = 4 operations

    If value > Threshold then read + compare + test + write = 4 operations   
            Value = 255
    Else
             Value = 0 (4 + 4) * 10000 = 80,000 Ops

Edge Detection Kernel:
Assume: 3x3 kernel, stride of 1, 
     kernel stays inside image
For each image position Ix (100 – 2) = 98 loops

read + inc + write + compare + test = 4 operations
     For each image position Iy (100 – 2) = 98 loops

read + inc + write + compare + test = 4 operations
             value = 0 write = 1 operation
             For each kernel position Kx 3 loops

read + inc + write + compare + test = 4 operations
                     For each kernel position Ky 3 loops

read + inc + write + compare + test = 4 operations
    value += image[Ix, Iy] * kernel[Kx, Ky] 6 read + 3 multiply + 3 add + 1 write = 13 operations
    Target[Ix, Iy] = value 2 read + 1 multiply + 1 add + 1 write = 5 operations

((((4 + 13 + 5)*3 + 4) * 3 + 1 + 4) * 98 + 4) * 98 = 682,276 Ops

“Traditional” Algorithm - Complexity



#ESCconf#ESCconf

“Traditional” Algorithm - Complexity

Walk Image, find outline start:
For each pixel in image 100 x 100 pixels = 10000 loops

read + inc + write + compare + test = 4 operations
    If value == 255 then read + compare + test = 3 operations   
    Trace outline(); Happens “rarely”, ignore call overhead

(4 + 3) * 10000 = 70,000 Ops

Trace blob outline:
For each pixel in border:

If Image[x-1, y] == 255 then x-- (for 5 cases)     5 * (3 read + multiply + add + compare + test) = 25 operations
One will trigger if clause: read + add/sub + write = 3 operations

If x < min_x then min_x = x (for 4 cases) 4 * (2 read + compare + test) = 16 operations
Assume 25% trigger if clause: write = 0.25 operations

If x = starting_x && y == starting_y then break 4 reads + 2 compare + and + test = 8 operations
Image[x, y] = 0 (erase current pixel) 2 reads + multiply + add + write = 5 operations

(25 + 3 + 16 + 0.25 + 8 + 5) = 57.25 Ops per border pixel

Total = 80000 + 682276 + 70000 = 832,276 operations per image
 + 57.25 operations per border pixel of all blobs



#ESCconf#ESCconf

“Traditional” Algorithm – Strengths/Weakness

Simple to implement

Simple to understand

Mostly independent of image content

Pretty slow

Multiple passes over image

Multiple working images

Not cache friendly

Original image destroyed

Strengths Weakness



#ESCconf#ESCconf

“Wanderer” Algorithm - Problem

Images consist of 50 to 200 very thin blobs

Imaging environment is controlled

No “large” blobs

Example comes from a real world optimization project

Blobs were actually fibers of a material

NOTE: Example images will show on a few blobs



#ESCconf#ESCconf

“Wanderer” Algorithm - Outline

1

2

3

4

5

Threshold Image

Find Blob Start

Explore Blob, Updating Bounding Box

Double Check Blob Fully Explored

Continue Until End of Image Reached 

1

2

3

4

5



#ESCconf#ESCconf

“Wanderer” Algorithm - Complexity

Threshold: Same as “Traditional”                                     80,000 Ops
Find Blob Start:  Same as “Traditional”  70,000 Ops

Explore Blob:
For each pixel in blob:
Explore adjacent the 8 adjacent pixels
explorer_pointer = cur_blob_start + fixed_offset read + write + add = 3 operations
if(*explorer_pointer == untouched_pixel) dereference + read + test = 3 operations

accumulate_pixel(this_x, this_y)  Assume 75% of the time: 0.75 *(2 push + call) = 2.25 operations
*explorer = *explorer & constant_tag  dereference + read + and + write = 4 operations

accumulate_pixel:
If x < min_x then min_x = x (for 4 cases) 4 * (2 read + compare + test) = 16 operations

Assume 25% trigger if clause: write = 0.25 operations
++pixel_count read + increment + write = 3 operations
return return = 1 operation

3 + 3 + 2.25 + 4 + 0.75 * (16 + 0.25 + 3 + 1) = 
27.5 operations per blob pixel (approximately actual is 27.4375)



#ESCconf#ESCconf

“Wanderer” Algorithm - Complexity

Explore Blob:
For each pixel in blob:
Move to next pixel: explore right, down, down & right, down & left: 4 cases assume 50% hit so count 2 cases
explorer_pointer = explorer_pointer + fixed_offset read + write + add = 3 operations
if(*explorer_pointer > completed_pixel dereference + read + subtract + test = 4 operations
     && *explorer_pointer < untouched_pixel) and + subtract + test = 3 operations

cur_blob_start = explorer_pointer write = 1 operation
cur_coordinate += const_offset read + add + write = 3 operations

           2 * (3 + 4 + 3 + 1 + 3) = 28 operations per blob pixel

Double Check Blob Fully Explored:
For each pixel current blob bounding box:
     if(*explorer_pointer > completed_pixel dereference + read + subtract + test = 4 operations
     && *explorer_pointer < untouched_pixel) and + subtract + test = 3 operations

cur_blob_start = explorer_pointer write = 1 operation
cur_blob_x = cur_offset % width 2 reads + modulus + write = 4 operations
cur_blob_y = cur_offset / width 2 reads + divide + write = 4 operations

            4 + 3 + 1 + 4 + 4 = 16 operations per current blob counted pixel



#ESCconf#ESCconf

“Wanderer” Algorithm - Complexity

Threshold: Same as “Traditional”                               80,000 Ops

Find Blob Start: Same as “Traditional” 70,000 Ops
Explore Blob:        27.5 + 28 ops  55.5 Ops per Blob Pixel
Double Check:      16 ops, assume executes 3x 48 Ops per Blob Pixel

Total = 80,000 + 70,000 =   150,000 operations per image
                      + 55.5 + 48 =             + 103.5 operations per blob pixel



#ESCconf#ESCconf

Comparison and Summary

Algorithm:
Traditional

Pixel
Wanderer

Ops per Image:
832,276
150,000 

Ops per Feature: 
57.25 per blob border

103.5 per blob area pixel

OBSERVATIONS:

Performance GREATLY depends on image contents
Wanderer faster for empty image, worse for large blobs

This application had long thin blobs, most only 1 or 2 pixels in width; 
blob area approximated blob border pixels in practice



#ESCconf#ESCconf

“Wanderer” Algorithm – Strengths/Weakness

15 to 30x faster for target image content 
vs commercial library

Single copy of image

Image altered but available

Complex to implement

HIGHLY dependent on image content

Multiple passes over image

Not cache friendly

Strengths Weakness



#ESCconf#ESCconf

“Single Pass” Algorithm - Problem

Track 5 to 10 small round objects per frame

Run on VERY small processors, including micro-controllers

Target processor need not hold full video frame, only current pixel

Example comes from a real world project

Image content mostly controlled via narrow band optical filter



#ESCconf#ESCconf

“Single Pass” Algorithm - Outline

For each pixel in the image

Threshold the pixel and detect segment start and ends

When a segment is complete add it to the connecting blob structure

1

2

3



#ESCconf#ESCconf

“Single Pass” Algorithm - Complexity

Setup variables:
forming_vector = false write = 1 operation
pixel_scanner = image_start read + write = 2 operations
current_x = current_y = 0; 2 writes = 2 operations

                   1 + 2 + 2 = 5 operations per image
Insert blob line:
For each blob Assume 10 blobs at all times (worst case)
      if this_y == last_y + 1 2 read, add, compare, test = 5 operations
            if min_x >= blob_min_x or 2 read, compare, test, or = 5 operations

       max_x <= blob_max_x 2 read, compare, test = 4 operations
   blob_last_y = this_y read + write = 2 operations <=Only for 1 blob
   blob_min_x = min_x read + write = 2 operations <=Only for 1 blob
   blob_max_x = max_x read + write = 2 operations <=Only for 1 blob
    if min_x < box_min_x 2 read, compare, test = 4 operations <=Only for 1 blob
          box_min_x = min_x read + write = 2 operations <=Only for 1 blob, 50%
    if max_x > box_max_x 2 read, compare, test = 4 operations <=Only for 1 blob
          box_max_x = max_x read + write = 2 operations <=Only for 1 blob, 50%

                10 * (5 + 5 + 4) + (2 + 2 + 2 + 4 + 0.5 + 4 + 0.5) = 155 operations per blob line



#ESCconf#ESCconf

“Single Pass” Algorithm - Complexity

Walk the image:
For each pixel in the image: 100 x 100 pixels = 10000 loops
     if *pixel_scanner > threshold dereference + read + compare + test = 4 operations 
          Assume: 1% hit image is mostly black
                if not forming_vector read + compare + test = 3 operations  <=Take worst case 
                                starting_x = max_x = current_x read + 2 write = 3 operations
                                starting_y = current_y read + write = 2 operations
                                forming_vector = true write = 1 operation

   else
                             max_x = current_x read + write = 2 operations    <=Not worst case

else
                            if forming_vector read + compare + test = 3 operations    <=Not worst case

insert_blob_line() from previous slide   <=Counted per blob line
forming_vector = false write = 1 operation <=Not worst case

++pixel_scanner; ++current_x; ++current_y 3* (read + increment + write) = 9 operations
if current_x > image_width read + compare + test = 4 operations
           if forming_vector insert_blob_line() read + compare + test = 3 operations    <=Image Row
           ++current_y; current_x = 0; read + increment + 2 write = 4 operations   <=Image Row
            forming_vector = false write = 1 operation  <=Image Row

10000 * 4 +  0.01 * (3 + 3 + 2 + 1) + (9 + 4) + 10 * (3 + 4 + 1) = 40093.09 => 40,093 + 5 setup = 
40,098 ops per image + 155 ops per blob line



#ESCconf#ESCconf

“Single Pass” Algorithm – Strengths/Weakness

Extremely fast, though no direct benchmark 

Single pass through image, and only need 
to have one pixel of the image at any time

Original image untouched

Simple to implement

Very cache friendly

Performance suffers with large 
number of blobs

Have to deal with combining blob 
fragments in some cases; did not 

address that here as didn’t need it 
for this particular case

Strengths Weakness



#ESCconf#ESCconf

Comparison and Summary

Algorithm:
Traditional
Wonderer

Single Pass

Ops per Image:
832,276
150,000
40,098 

Ops per Feature: 
57.25 per blob border pixel

103.5 per blob pixel 
155 per blob line

OBSERVATIONS:

Note ops per image constantly goes down, consider an empty image 
Most blob lines will have many pixels so 155 ops per line isn’t that bad

Consider a completely white image: single pass still better
Actual implementation also had noise filter to consolidate blob lines



#ESCconf#ESCconf

Final Thoughts

Matching the algorithm to the expected use case and input can 
greatly improve performance

These gains are complimentary and additive to other 
optimization techniques

Consider radically different approaches – “Single Pass” cannot 
be clearly evolved from “Traditional” or “Wanderer” algorithms

ALWAYS measure actual performance and use a wide variety of 
input 



#ESCconf#ESCconf

Speaker/Author Details

Http://FSStudio.com
LloydMoore@FSStudio.com



#ESCconf#ESCcon
f

Thank You! 
Questions?

@ESC_Conf


